Turbulence Assessment and Monitoring System (TAMS)

Ellen Bass

Search Technology, Inc.
4960 Peachtree Industrial Blvd., Suite 230
Norcross, GA 30071-1580
770-441-1457
ellen@searchtech.com

The "Costs" of Turbulence

- Upsets
- Injuries (especially flight attendants)
- Increased operating costs
- Lower revenues

Problems with Current Turbulence Reporting System

- Forecasts are not precise
- Definitions used by pilots for turbulence reporting are not precise
- Reports are not aircraft specific
- Occupant reaction is subjective

Goals

• Determine standardized, objective way to measure turbulence

• Design a pilot-centered system

Consider the business case

Major Participants

- Search Technology, Inc.
- NASA (Technical Monitor: Bob Stuever)
- Delta Air Lines
- Aerotech Research
- National Center for Atmospheric Research

What Pilots Want To Know!

(Based on survey of 270+ major, regional, and foreign commercial airline jet pilots)

Current turbulence level

Peak turbulence over the last 5 minutes

- Level
- Frequency

```
Occasional - O 0 - 1/3 of the time
```

Intermittent - I
$$1/3 - 2/3$$
 of the time

Continuous - C > 2/3 of the time

Turbulence Metric

Example

2/O4

Current turbulence is 2

Peak level over the past 5 minutes is 4

Peak frequency is occasional

< 1/3 of the time, the level has been at 4

Short and Long Term Strategy

- Ownship display
 - Mostly software
- Verbal PIREPs with TAMS values + ...
 - Mostly software
- Traffic Turbulence Display (40 miles) + ...
 - Software plus communication capability
- Traffic Turbulence Display (120 miles) + ...
 - Software plus improved communication infrastructure

Simulator Experiment

Level D full motion simulator

16 commercial airline pilots

5 experimental treatments (baseline plus 4 "strategies"

8 scenarios

8 Scenarios

Pilot reports:

- •Same as participant aircraft
- Over/under-reporting

4 atmospheric conditions:

- •All light
- •Prepare cabin
- •Smooth above
- Smooth below

Smooth Above Scenario Example

Dependent Variables

Workload (ride report communications)

Decision times

Decision quality

- Flight attendant/passenger safety
- Passenger comfort
- Flight planning decisions with respect to economy

Average Radio Communication Time

Time to obtain pilot reports reduced significantly with 120-mile Traffic Turbulence Display

Time to Make Decision After Turbulence Onset

Reduction in decision times in the Traffic Turbulence Display-aided conditions

Quality of decisions

Quality Considerations	TAMS numeric	Transmission on	TAMS Display vs.
	convention vs.	Display vs. Radio	TAMS Radio
	LMS		
Passenger Safety	80/80 vs. 61/62	48/48 vs. 93/94	48/48 vs. 32/32
Flight Attendant Safety	87/88 vs. 56/62	55/56 vs. 88/94	55/56 vs. 32/32
Passenger Comfort	88/88 vs. 58/62	56/56 vs. 90/94	56/56 vs. 32/32
Economy	81/88 vs. 53/62	55/56 vs. 79/94	55/56 vs. 26/32

TAMS-aided turbulence reporting provided significantly better passenger comfort and flight attendant safety than light/moderate/severe (LMS) convention

Traffic Turbulence Display enhanced flight plan decision making with respect to economy

Anticipated Benefits from TAMS

- Improved operational safety through improving pilot situation awareness of turbulence location and severity
- Improved customer satisfaction of flight experience by reducing exposure to turbulence
- Improving operational efficiencies and profitability by allowing pilots to optimize flight path decisions in areas of turbulence